232-Th and 238-U are radioactive
Allows radioactive decay dating
$$ t = 46.67~\text{Gyr} \left[\log\epsilon\left(\text{Th/Eu}\right)_0 - \log\epsilon\left(\text{Th/Eu}\right)_{\text{obs}}\right] $$
$$ t = 14.84~\text{Gyr} \left[\log\epsilon\left(\text{U/Eu}\right)_0 - \log\epsilon\left(\text{U/Eu}\right)_{\text{obs}}\right] $$
$$ t = 21.80~\text{Gyr} \left[\log\epsilon\left(\text{U/Th}\right)_0 - \log\epsilon\left(\text{U/Th}\right)_{\text{obs}}\right] $$
M. Mumpower and T. Sprouse
Low-entropy dynamical (tidal) ejecta of a NSM
(Korobkin+ 2012; Rosswog+ 2013)
Vary the initial electron fraction: $Y_e=0.005 - 0.250$
$Y_e = \left[1+(n/p)\right]^{-1}$
$$ t = 46.67~\text{Gyr} \left[\log\epsilon\left(\text{Th/Eu}\right)_0 - \log\epsilon\left(\text{Th/Eu}\right)_{\text{obs}}\right] $$
$$ t = 14.84~\text{Gyr} \left[\log\epsilon\left(\text{U/Eu}\right)_0 - \log\epsilon\left(\text{U/Eu}\right)_{\text{obs}}\right] $$
$$ t = 21.80~\text{Gyr} \left[\log\epsilon\left(\text{U/Th}\right)_0 - \log\epsilon\left(\text{U/Th}\right)_{\text{obs}}\right] $$
Need a method to dilute the actinides to reduce the Th/Eu production ratio
Builds empircal mass ejecta distributions as a function of $Y_e$ (0.005-0.450)
To explain entire pattern from Zr to U
The actinides are over-produced in very cold, neutron-rich (tidal) ejecta
NSMs could still be an actinide-boost source if most of the ejecta mass does not contribute actinides
The same r-process source can in principle account for observed actinide variations
How do the empirically built ejecta distributions compare to NSM simulations?
Entropy, dynamical timescale, nuclear physics variations...
Rebecca Surman (ND), Nicole Vassh (ND), Matthew Mumpower (LANL), Trevor M. Sprouse (ND)
Gail C. McLaughlin (NC State), Anna Frebel (MIT)
Timothy C. Beers (ND), Terese T. Hansen (TAMU), Chris Sneden (UT-Austin), Vinicius M. Placco (ND),
Ian U. Roederer (UMich.), Charli M. Sakari (UW), Rana Ezzeddine (MIT)
Grant Mathews (ND), Ani Aprahamian (ND), Toshihiko Kawano (LANL)